The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

Using Web-based Multimedia Applications to Enhance
Mathematics Instruction with Reed-Solomon Codes

Gregory A. Gibson Neil P. Sigmon

Email: gagibson@ncat.edu Email: npsigmon@radford.edu
Department of Mathematics Department of Mathematics and Statistics
North Carolina A & T State University Box 6942

Greensboro, NC 27411 USA Radford University

Radford, VA 24142 USA

Abstract

In many introductory and upper level college mathematics courses, due to time constraints, students are often not exposed
to many real-life applications of the material. As a result, students can fail to see the importance of the topics covered.
However, the use of technological tools can quickly bring practical applications of mathematics to life. Using these tools,
students can quickly see how the mathematical concepts they cover have great value without the cumbersome background
that would normally be needed in a more traditional setting. This paper describes a web-based multimedia module
designed for calculus involving Reed-Solomon codes. Reed-Solomon codes are currently being used to ensure reliable
transformation of information for many applications, including satellite communications and compact discs. A discussion is
given describing how these codes were instrumental in transmitting visual images of the outer planets during the Voyager
satellite mission. All materials involving the module accompanying this paper can be reached here.

1 Introduction

A question that can often puzzle undergraduate students concerns the applicability of mathematics in
standard introductory college mathematics courses. Many students regard these courses as a series of
numbers and symbols that are never used in their major field and in so called “real-life” applications.
As a result, students sometimes find these courses dull, uninteresting, and fail to see their importance.
Hence, they lack the motivation necessary to obtain a thorough understanding of the material.

Technological innovation provides an excellent tool to present interesting applications of mathematics
that would be too lengthy and cumbersome to present in a traditional manner. Through the use of web-
based multimedia and mathematical software, students can quickly be exposed to the basics of the
application and see how mathematics is used in a “real-life” setting.

This paper describes how multimedia modules can be designed to demonstrate practical applications of
mathematics covered in typical engineering calculus. Specifically, a module created for calculus
involving Reed-Solomon codes will be discussed. Normally, Reed-Solomon codes are introduced to
students in abstract algebra or a first course in coding theory. However, the multimedia and
mathematical software that will be described can allow students to quickly see how the concepts they
study have value in performing some of the mathematics required with Reed-Solomon codes without
the background that would be needed to understand the codes in a traditional setting.

mailto:gagibson@ncat.edu
mailto:npsigmon@radford.edu
https://ejmt.mathandtech.org/Contents/v2n1p5/Reed-Solomonpage.htm

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

The modules are web-based and interactive. In a typical module, students are introduced to an
interesting application topic through the use of video and picture demonstrations. Through the use of
two Maplet assignment labs per module, students explore and discover important mathematical aspects
of the problem. These applications are designed to increase students’ awareness of the importance of
the mathematics in their lives and careers. Faculty benefit in having easy access to up-to-date
applications that many times are not provided in current textbooks.

More details concerning this work can be found in the paper by [Tang et al., 1999]. A more detailed
explanation of Reed-Solomon codes and the VVoyager satellite mission can be found in [Klima et al.,
2007], [Sigmon and Stitzinger, 1996], and [Wicker and Bhargava, 1994].

2 MODULE IMPLEMENTATION

Error correcting codes involve creating a scheme for correcting errors in the transmission of
information to ensure that the transmission is done reliably. Reed-Solomon codes are a very common
error correcting technique widely used today. These codes involve sending information in the form of
polynomial coefficients. This code has been used in satellite communications and is currently being
used to correct errors that occur in compact discs and cable television transmissions. The Reed-
Solomon code module for this module emphasizes the use of these codes in ensuring reliable visual
image transmissions of pictures from the Voyager Il satellite of the planets Uranus and Neptune. The
steps for the implementation of this module are now described.

2.1 Video Demonstration of the Application
The Voyager satellite mission and its purpose are introduced through pictures and the web-based

QuickTime video software. Figure 1 and Figure 2 (next page) illustrate photographs given in the
module taken by Voyager Il while exploring the planets Uranus and Neptune.

Figure 1: Pictures of Uranus and its rings (courtesy NASA/JPL).

21

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

To send pictures back to Earth from Uranus and Neptune, Voyager Il had to transmit them in digitized
form over a vast distance. Reed-Solomon codes were essential in ensuring these digitized pictures
arrived on Earth in the correct form. The module carefully explains the history of the VVoyager mission
and the importance of Reed-Solomon codes for its success.

Figure 2: Picture of Neptune and one its moons, Triton (courtesy NASA/JPL).
2.2 Mathematical Computations

To send a picture from outer space to Earth, the image is commonly digitized into bits, which are
strings of 0’s and 1°s, and sent over a space channel. Reed-Solomon codes encode these strings into
polynomials where the transmission and error correction process can be done in a mathematical
fashion. Many of the mathematical computations required to encode messages and correct errors in
Reed-Solomon codes involve calculations such as polynomial multiplication, finding roots of
polynomials, polynomial division, and differentiation that a typical calculus student can perform.

Due to the intensive computations required for Reed-Solomon codes, two Maplets are utilized to
perform the mathematical calculations. Maplets allow one access to windows, dialogs, and other visual
interfaces that are very simple to use and require no background programming knowledge. By simply
typing information into text boxes and clicking buttons, students can easily execute the large amount of
computations required almost instantaneously. The Maplets are produced using written code involving
the symbolic manipulator Maple, which is a powerful programming language specially designed to
perform symbolic, numeric, and graphic mathematical computations. However, to successfully use a
Maplet, students do not have to have any working knowledge of Maple. They only need to have Maple
installed on their machine and to run the end product of the Maple code used to construct the Maplet.

In this module, all numerical computations are done in modulo 2 (binary) arithmetic. Formally, this
says that if a and b are integers, a is congruent to b modulo 2, denoted as a =b (mod 2), whenever 2

divides a—Db . Hence, all numerical computations result in a 0 or 1. If 2 evenly divides a number, the
resulting computation is 0. If not, the result is 1. For example, the number 6 in modulo 2 arithmetic
reduces to 0, that is, 6 = 0 (mod 2) . However, the number 7 in modulo 2 arithmetic reduces to 1, that

is, 7=1(mod 2) . This arithmetic applies to all computations, including coefficients of polynomials.

22

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

For example, in modulo 2 arithmetic, the polynomial 7a®+4a’-a+2=1a>+0a’+la+0=a’+a.

We next demonstrate the basic mathematics required and how Maplets are used to perform the Reed-
Solomon process. This discussion will present Reed-Solomon codes at the level that it is presented to a
calculus student. A more advanced discussion of these codes can be found in [Klima et al., 2007].

2.2.1 Finite Field Generation

Reed-Solomon codes are constructed and decoded through the use of finite field arithmetic. Finite
fields are a finite set of elements (in this paper polynomials) that exhibit special properties. Although
calculus students are not introduced to all the properties that finite fields exhibit, some of the more
basic and important ones are emphasized. We first state one of the most elementary facts:

Finite Fields contain p™ elements, where p is prime (an integer where the only divisors are 1

and p) and m is a positive integer. The positive integer m is the degree of a primitive polynomial
(we discuss this below) used to generate the elements of the finite field.

In Reed-Solomon codes, the prime we use is p = 2. As an example, suppose we want to generate a

finite field of 2° =32 elements. Note here that p = 2 and m = 5. Since m = 5, we need a primitive
polynomial of degree 5. Only a selected number of polynomials are primitive. Tables for finding
primitive polynomials can be found in [Lidl and Neiderreiter, 1986]. Fortunately, the Maplet we will
soon display can quickly determine if a polynomial of a certain degree is primitive.

In the examples that follow, the primitive polynomial we will use is p(x) = x° +x° +1. Note the

degree of this polynomial is 5. Let x = a be a root of p(x). The root a is known as a primitive element.
To generate the non-zero elements of a finite field, we perform repeated exponentiations on the

primitive element a until all the non-zero elements are generated. For our example that contains

2° =32 elements, this requires generating the set{a, a%,a®...,a% a% = 1}. Note the last non-zero

element, in this case, a*, will always be equal to 1 (a discussion of why this is true can be found in
[Lidl and Niederreiter, 1986]. The finite field is completed by adding O to this set.

It turns out for reasons that will be seen later that a convenient way to represent the non-zero finite
field elements is through a “polynomial representation”. This representation is accomplished by using
the fact the primitive element a is a root of the primitive polynomial p(x). To see how this works,

consider our finite field of 2° =32 elements generated by the primitive element a. We generate the
first four non-zero elements of this field in the normal way, that is, we compute a, a?, a% and a*.

However, once a° is reached, we note that a is a root of p(x) and write

23

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

p(@)=a°+a’®+1=0.

Solving for a® and noting that all polynomial coefficients are reduced modulo 2 gives

a°=-a®-1=a%+1.

Hence, a3 +1 is the polynomial we will use to represent a® in the finite field. Subsequent elements
can be generated in the following manner:

a®=aa’=a@@®+1)=a*+a,

7 2

a’ =aa® =a(a4+a)=a5+a
etc.

3

—a’+1+a%?=a’+a? +1,

This process continues until the last non-zero element, a3 is reached. Generating all the polynomial
representations of non-zero elements by hand requires a tedious process. However, the Reed-Solomon
codeword generator Maplet given in Figure 3 does this process quickly. We begin by entering the

polynomial p(x) = x° +x° +1 and verify that it is primitive by clicking the Is p(x) primitive button.

& Reed-Solomon Codeword Generator =10 x|
Erter a primitive polynamial: px) = Ix"S +x+3+1
Generate Finite Field | Dizplay: Finite Field |
Erter Mumber of Errar Code Corrects: I
Compute Generating Palynomial: | Click for better display: |
Expand Generating Polyhamial: | hat is alx)? |
Erter Polynomial: milx) = What is milx)? |
Compute Codevword: | Click for better display: |
clx) =
Corwvert ta Binary: | What is c(x)7 |
Clear All | it

Figure 3: Reed-Solomon codeword generator Maplet verifying input polynomial is primitive

24

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

By clicking Generate Finite Field and the Display Finite Field buttons, the elements of the finite
field are displayed in a separate window given by Figure 4.

-iBi x|

[a, 22, 2"}, a~4, a~3+], a~d+a, a~3+a~2+], a4+ a, ardtatFHar2+], atd+at], atF+at2+at], atdtatFHat2ta,
hd+a2+], atl, a*2+a, a*3+a*2, atd+and, atd+a3+], atd+atI+atl, atdtat 3t 2atl, atd4at24+atl, at2+atl,
a¥+a2+a, atd+atF+anl, atd+l, atI+atl, atdtan2+a, a02+]1, a3 +a, atd+anl, 1, 0]

Finite Field:

o back to Reed-Solomon codeword generator swindow I

Figure 4: Finite field display
2.2.2 Encoding a Message to Be Sent

When setting up a scheme to transmit a message, we must specify the maximum number of errors that
can be corrected in the transmission upon arrival to the message’s destination. Reed-Solomon codes
can correct up to a certain number of errors in a transmitted message. Let t be this specified number of

errors. Then as long as2t < 2™ —1, where 2™ is the number of finite field elements (recall for this
example the number is 2° = 32), then the scheme is guaranteed to correct t errors.

For the following example, we will use a t = 4 error correcting code. Note for this value of t that
2t =8<2°-1=31.Inerror correcting codes, the transmitted source message is called a codeword.
Codewords in Reed-Solomon codes are created by taking multiples of the polynomial

g(x) = (x—a)(x—a®)(x-a’)---(x—a%).

25

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

Here, g(x) is called the generating polynomial. That is, to create a codeword, we take a polynomial

m(x) of degree less than 2™ —1— 2t and multiply it by the generating polynomial g(x). This gives the
codeword c(x) = m(x)g(x). Figure 5 illustrates the Reed-Solomon codeword generator Maplet where
for a 4 error correcting code, a codeword is computed using the generating polynomial

m(x) = a®x!! +a?"x1% + a?0x° .

The generator polynomial is computed by clicking the Compute Generating Polynomial Button and
the codeword is computed by clicking the Compute Codeword button.

::(—5 Reed-Solomon Codeword Generator -0l x|
Erter a primitive palynomial: plx) = Ix"S +x*3+1 Check: Iz p(x) primitive? | lirue—

Generste Finite Field | Dizplay Finite Field |
Erter Mumber of Error Code Carrects: |4

A0 200 A e) ea S 0 a 0 et T (-2 8)
Compute Generating Polynomial: | Click for better display |
Expand Generating Palynomial: | ‘What is glx)? |
ag*xt 11 +a 2T+ 10 + 220X
Erter Polynormial: mix) = What is mix)? |
- g 10+~ 13+~ 18+ 26 *x 1T+a 19 *x~ 16+a 24 *x~ 15+a~ 12 %%~ 1d+a~F+x~ Li+a 2 *x 124+a 21 *x~ 11+a~ 28 +x~ 1
+a" 25 0 Click for better display |
cix) =
Convert to Binary | ‘What iz c(x)? |
Clear Al | Gt

Figure 5: Reed-Solomon codeword generation example

Thus, the codeword is the polynomial

C(X) — a8x19+a13x18+a26x17+a19x16+a24x15+a12x14+a3x13+a2x12+a21x11+a28x1° + a25X9

The coefficients of the codeword contain the transmitted information. In practice, these coefficients are
transmitted in binary, that is, as a string of 0’s and 1’s. To describe how the coefficients of ¢c(x) are

translated to binary, consider the first coefficient of the codeword, a®. If we use the process described

26

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

in Section 2.2.1 with the primitive polynomial p(x) = x° 4+ x3 +1 for converting finite field elements
to polynomials, this element has the polynomial representation

a=a*+ad+a=(0)1+@®a+(0)a’+@a’+@Da*.

Reading off the coefficients gives the binary string 01011. The other coefficients are converted to
binary in a similar manner. Note that the number of binary digits in this string, five, is the same as the
degree of the primitive polynomial used to generate the finite field. In the Reed-Solomon codeword
generator Maplet, clicking the Convert to Binary button converts the codeword to its equivalent
binary representation. Figure 6 shows the result for this example.

::(—ﬁ Reed-Solomon Codeword Generator _lof xi
Enter & primitive polynomial: plx) = I xS +x"3+1 Check: I pe) privitive? | lirue*

Generate Finite Field | Dizplay Finite Field |
Erter humber of Error Code Corrects: |4

x-a)(x-a 2y a1 0ea i a5 (e a e Oea T (x-a)
Compute Generating Polynamial: | Click for better display |
Expand Generating Polynomial: | What iz gx)? |
~§*x~11 +a*2T*x"10 + a~20*x"9
Enter Message Palynomial: mi(x) = What iz m(x)7 |

0,0, 0, 0,0,0,0,0,0,0,0,0,0,0,0,0,,0,0,0,0,0,0,0,0,0, 0, 0,0,0,0,0,0, 0,0, 0,0,0,0,0,0,0,0,0, 0, 1,0,0,0, 1, : :
Camte Conewors:_| 1,0,1,0,0,1,1,1,0,1,0,0,1,0,0,0,0,0,1,0,0,1,1,1,1,0,0,1,1,1,1,1,0,1,1,1,1,0, 1,0, 1,0,1,0,1,0,1,0, 1, 1, Cick for beter iy |
e(x)= 1,0,

,0,0,0,0] Wit i C(X)? |
Clear &l | Gt

Figure 6: Binary Representation of the codeword

2.2.3 Checking a Received Message for Errors

Suppose the codeword is transmitted and a message received. Our goal is to check if there are errors in
the transmission, and if so, correct them. Itis in this process that calculus students see the importance
of basic polynomial differentiation since computing the derivative of polynomials is essential in the
error correction process. To demonstrate this process, suppose we receive the following message that
has been converted from binary to polynomial form.

27

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

I’(X) = 8.24X15 + 8.13X14 + ax 13 + aloxlz + a X + alOX]'O +a 9X9 +a X8 +a 9X +a 0X6 + a X5

+a x+a x+ax +a x+a

Recall that a codeword c(x) is obtained by forming the product of the polynomial m(x) and the
generating polynomial g(x). That is, c(x) = m(x)g(x) where

g(x) = (x—a)(x—a®)(x—a’)---(x—a?).

Because of how c(x) is constructed with the generating polynomial g(x), the terms a, aZ, ad,..., a%

are all roots of c(x). This provides the basis for checking whether a received message is a codeword.

Suppose that we receive a message r(x) which is not a codeword, that is, suppose r(x) # c(x). Then

r(x) will not be a multiple of the generating polynomial g(x). If so, then there will be at least one of the

terms a, a2, a°,..., a? thatis nota root of r(x). In mathematical notation, this says

r(ai) # 0 forat leastone i =1...2t.

The values of r(ai) evaluated from 1..2t are known as syndromes. If we substitute a, a%,a...a%

into r(x) and all evaluate to be 0, then r(x) is a codeword and we can stop. If we substitute

a,a%,a%,...,a% into r(x) and any evaluate to not be 0, then r(x) is not a codeword and we must

proceed to the necessary steps to correct it.

Figure 7 (next page) illustrates the Reed-Solomon code error corrector Maplet designed to check a
received message for errors and correct them if necessary. In this Maplet, the primitive polynomial

p(x) = x° + x3 +1 and the maximum number of errors (t = 4) the code can correct are entered. The
Maplet allows received messages to be entered in binary or polynomial form. Since polynomial form is

used, the Polynomial button is clicked and a separate window is given for entering the received

polynomial shown in Figure 8 (next page). The syndromes are found by clicking the Compute

syndromes button. In Figure 7, the syndromes are [a a®’, al® a° a®d a3 a?®, 23]. Since the

syndromes must all be zero for the message to be a codeword, we must proceed and correct the errors.
2.2.4 Error Correction

The initial step for correcting the received polynomial r(x) involves using the Euclidean algorithm. A
discussion of this algorithm can be found in [Klima et al., 2007]. Our goal for executing this algorithm

is to determine a polynomial R(z) known as the error evaluator polynomial and a polynomial V(z)
called the error locator polynomial.

28

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

::(—ﬁ Reed-Solomon Error Corrector =]
ey (TS PR)= I"A5 +xr3+1 Check: Iz p(x) primitive? | Iirue—

Erter Mumber of Error Code Corrects: |4

A244xe 15t 13t 1 1+a~ 10 #x 1242~ T e 11+a~ 10 *x " 10+a " 19 *x~9

lick on format to enter VRGO TGS AR IIN D Giokfor better dislay |
recelved message:)
rx)=

Binary Palynotnial | What is ri(x)? |

s= |

T

I[a"ét, a~27,a"18, a"5, a~13, a"3, a"25, a"23] Compute syndrome polynarmial and f |

Cormpute palynomisls B and & | R(z) = I W(Z) =

Cormpute roots of % and errar locations | Roots of ¥ = Error Locations = I

Cormpute Derivative of & | I Corpute errar palynarmisl | elx) = I

Compute Codeyvord: | j Click for hetter display. |

cix) =

Caonvert to Binary. | LI What is clx)? |
Codeyvord Syndrames | I Einary Errars Corrected | I Clear For Mext Meszage | Gt |

Figure 7: Reed-Solomon Error Corrector Maplet

-10] x|

A" 24*x*15 +a* 13 *x 14 +a*xt 13 +a 1012 + h"T*x"ll +a*10*x~10 +a*19*x"9 +
2" 22+x g + 2”205 + 2420 x40 +at 17405 + a2l txd +at 19403 a3 a2 + a5 i +
12

Enter polynomisl received message: r(x) =

| o back to Regd-Solomot error corrector swinciom I

Figure 8: Maplet window for entering received polynomial

29

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

As a preliminary, using the syndromes found above as coefficients, we form a function of degree 2t — 1

known as the syndrome polynomial S(z). Using the syndromes [a4, a?’ a® a° a? ad a?®, a23]

for the t = 4 error correcting code, this polynomial would be
S(z) = a*+a? z+a'®z%+a’ 3 +al®z*+ad > +a? % +a %

The next step requires executing the Euclidean algorithm on the syndrome polynomial S(z)and the

polynomial f (2) = 2% = 28 This process, discussed in detail in [Klima et al., 2007], uses repeated

polynomial division and is beyond the scope of what is normally discussed in calculus. However, the
Reed-Solomon code error corrector Maplet quickly provides the necessary results. The output of this

process gives the error evaluator polynomial R(z) = a?z2 +a%z +a'* and the error locator

polynomial V (z) = a®z® + a'®z2 + a%z +a®. Figure 9 illustrates the Maplet output that is achieved

by clicking the Compute syndrome polynomial and f and Compute polynomials R and V buttons.

=
(TS e (e e, Fed)= I"A5 +xr3+1 Check: Iz px) primitive? | l—hue

Erter Mumber of Error Code Corrects: |4

A2 15+ac 135 lates 13Has 10 12420 T #x 1H+a 10 %~ 10+4a 19 #x9

Click on format to erter A;‘gZ*x"f;—;"Z!l*x"Tﬂ"Zl]*x“ﬁﬂ“l'?*x"S-l—a"Zl*x"éiﬂ" 19*x"3+a 3 %2+ Click for better display |
received message: T
i) =
Binary Palynamisl What is r(x)7 |

Sz = [Frdariesrat2S i 23T

Compute syndromes | I[a"4, a*27, a~18, a5, a"13, a"3, a*25, a"23] Compute syndrome polynomial and f |

f= z8
| ¢ Compute polynomials R and b | R(z) = Ia"Zﬁ*z"Z-l—a"ZZ*zﬂ"lél Wizl = |at6*z J+a~1§re 2+ar 0 z+tan 10
Corpute roots of % and error locations | Roots of % = Error Locations = I
Cornpute Derivative of | I Compute errar polyramisl | e(x) = I
Compute Codewyord: | = Zlick for better display, |
cix) =
Canvert ta Binary: | LI What is ci(x)7 |
Codeword Syndrormes: | I Einary: Errors Corrected | I Clear For Mext Message | Gt |

Figure 9: Maplet output for error evaluator polynomial R(z) and the error locator polynomial V(z)

30

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

The polynomials R(z) and V(z) are used to determine the polynomial coefficient location of the errors.
Since c(x), the codeword, and r(x), the received message, are not equal, their polynomial coefficients
must differ at certain powers of x. The difference in these coefficients makes up the coefficients of an
error polynomial that we will denote as e(x). Using e(x), we can find the codeword c(x) by computing
c(x) = r(x) + e(x). Our goal is to find e(x), which is what R(z) and V(z) are used for.

The roots of V(z) determine the polynomial location of the errors. In the Reed-Solomon process, each
root of V(z) will be one of the non-zero elements in the finite field. Recall in the above example that

we generated a finite field of 2° =32 elements, which gave us 31 non-zero elements. By clicking the
Compute roots of V and error locations button in the Reed-Solomon error corrector Maplet, the
roots of V and corresponding error positions are computed. Figure 10 displays the result.

=101 x]
Erter primitive polynomial: plx) = Ix"5 +x*3+1 Check: Iz p]) prirmitive? | Iil'll.e
Erter Mumnber of Error Code Corrects: |4
A2+ 1542 13t Ma s Li+as 10~ 1240 T+~ L1+~ 10+t 10+a 19 #x 40
Click on format to enter 224 829 40 THa 20 = vbtat 17 xS s 2w da s 19w a3 2+ Click for better display |
received message: 25 x+an12
rix) =
Binary Polynarmial | Wbt s K7 |

S(z) = |13 *ridtarFrro5+a 25z Mhtar 23 te AT

Compute syndromes | I[a"d\, a~27,a"1§, a"5, a~13, a3, 225, a~ 23] Commpute syndrome palynormial and £ |

f= =8
Compute polyhamials B and Y | R(z) = Ia"Zﬁ*z“Z-l—a"H*zﬂ"ld Viz)= |[at6*z ¥+ar18* 2+a 0 4z+an10
| Compute roots of ¥ and error locations i Roots of ¥ = I[a"?l, a~23, a"23] Error Locations = W
Compute Derivative of v | I Campute errar palynamisl | elx) = I
Compute Codewyard: | j Click far hetter display. |
Canvert o Binary, | =9 LI What iz clx)? |
Codeward Syndromes | I Eirary: Errors Carrected | l— Clear For Next Mezzage | Gt |

Figure 10: Maplet output for roots of error locator polynomial V(z) and corresponding error positions.

31

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

The output says, for example, that a2 is a root of V(z), that is V (a?!) = 0, and that an error position

occurs at the x'° location, which will be a term that makes up e(x). There is a relationship between the

exponent of the root a®!of V(z), 21, and the error position of 10. Recall that there are 31 non-zero
finite field elements. The exponent of the root of V(z) and the error position will always add to give the
number of non-zero finite field elements. Looking at the output from Figure 10, note that 21 + 10 = 31,
22 +9 =31, and 23 + 8 = 31. The output from Figure 10 also tells us that the difference between r(x)

and c(x) occur in the coefficients of x'%, x?, and x®, which make up the terms of e(x) . Since we have
three roots, this indicates that three errors have occurred.

Knowing the terms that make up e(x), we now must determine what the coefficients of these terms are.

That is, we must determine the coefficients of the terms xlo, x9, and x8. The error coefficient
positions can be computed using the formula

: 1)

where a' is a root of the error locator polynomial V(z), i+ j sums to the number of non-zero finite
field elements, and e; is the polynomial coefficient for the term x) for the jth error position in the

error polynomial e(x). Equation (1) is the error evaluator polynomial R(z) divided by the derivative of
the error locator polynomial V(z). Both are evaluated at a root of the error locator polynomial V(z) used

to find the error position. For example, the term a2! was a root of the error locator polynomial V(z)

and the error position was 10. Thus, equation (1) says the coefficient of the error position x0 is

€10 =— 51
Vv r(a21)
The coefficients eqg and eg of e(x) are determined similarly using (1). Once its coefficients are

determined, the error polynomial e(x) is computed and the codeword can be found. To get the
codeword, we simply add the error polynomial e(x) to the received polynomial r(x), that is, we
compute c(x) = r(x) + e(x). Figure 11 (next page) illustrates the result of using the Reed-Solomon error

Maplet to compute the derivative V'(z) = a®z2 + a® of the error locator polynomial V(z) and the error

polynomial e(x) = a**x!® + ax® + a?x® . The codeword is then computed to be

c(x)=a24x15+a13x14+ax3+a10x12+a X +a x°+a8x9+a8x8+a9x +a°x6+a X5

+a x+a x+ax +a x+a

32

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

These terms are computed in the Maplet by clicking the Compute Derivative of VV, Compute error
polynomial, and Compute Codeword buttons respectively. To verify that c(x) is a codeword, click

the Codeword Syndromes to verify that the syndromes are now all zero.

:-(; Reed-Solomon Error Corrector
i (TSN [l el ()= Ix"s +x3+1 Check: I= pix) primitive? l—t[ue

Erter Mumber of Error Code Corrects: |4

~240 15+at 135 Mt 1Has 10 12+a0 T 1 +a s 10 #x -~ 10+a 19+ 9

received message: ~28*x+at12

s =

Click on farmat to enter A2+ 8+t 20 A THa M0 *xG+a” 1 T*x S+a "2 1w d+a s 19 %~ J+Ha 3 #xn 2+ Click for better display |

Binary Palynotmial Wyhat i r(07 |

=10l]

Compute syndrofmes | I[a"d-, a*27,a"18, a5, 2”13, a3, 225, a~23] Compute syhdrome polynomial and f

f= 8
Compute polynomials B and v | R(z)= Ia"Zﬁ*z"Z-l—a"zz *z+a*14 Wiz) = |ate*E~Ftat 184z 2+ar P r+an 10
Compute roots of % and error locations | Roots of ¥ = |[a"2 1,a"22,a"23] Ertar Locations = IW
Compute Derivative of ¥ | Ia"li*z"Z-l—a"g Compute error polynomial | elx) = Ia" 14+x~10+a*x" 0+a 412 #x8

Conwvert to Binary |

¢) | 244415+ 13 Mtaa s li+as 104~ 124+a T+ L a4 5 10+~ 18 *x 9 +a 18 *x g & . . |
ompute Codeword: Click for better dizplay
o) = 42044 T+ 420 bt 1T *xt S+a 2]t da A 10 A Bt B 2t 25 Fatat 12
;I What is ofx)? |

S@= [dnrd i stat 25 itz

T — ||[n, 0,0,0,0,0,0,0] BT em— |||— Clear For Mext Message | uit |
Figure 11: Maplet output error polynomial e(x) and codeword c¢(x).
By comparing the received polynomial
24,15 13,14 13 10,12 10,,10 19,9 8 29 20,,6 5

r(x)=ax+ax+ax +ax+ax +ax+ax+ax+ax+ax+ax

+a’lx* +al®x® +ax® +a®x+at?

and codeword

33

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

0,6 5

8,9 8,8 9X7+a2x +a17x

°+a1 X +a1 X +8.2

c(x) = a?*x® 4 al¥x1 fax® +al%2 4+ a' x4 a%xt

+a’x* +al¥3 +ax? +a®®x+al?
we can see that 3 errors were corrected at the coefficients of x®, x°, and x!°. An important fact to

note is that the errors occurred as consecutive coefficients. This constitutes what is called an error
burst, an occurrence not uncommon in error correction.

Specifying the number of errors a code corrects refers to polynomial coefficient errors. In the example,
the error polynomial e(x) was made up of three terms, which constituted three polynomial errors. This
will result in even more binary errors being corrected. By converting the codeword to binary by
clicking the Convert to Binary button and clicking the Binary Errors Corrected button in the Reed-
Solomon error corrector Maplet, Figure 12 illustrates that seven binary errors were corrected.

::(—i Reed-Solomon Error Corrector NS
Bt iR (e A (£ = Ixn5 +x3+1 Check: Iz pix) primitive? | Itru.e—

Erter Murnber of Error Code Corrects: |4

215 1 Tt L 100 12+a T 11+ 1075 102 19550
Click on format to erter RGN T A NGRS A NI Gk o beter iy |

received message:
rx) =

Binary Paolynarmial | Wihat iz r(x07 |

S(z) = IlS *rrdtat 3tz oftat 25t etan23te T

Compute syndromes | I[a"4\, a~27,a~1§, a"5, a~13, 2"}, 225, a*23] Compute syndrome polynomial and £ |
=8

f=

Compute polynomials R and ¥ | R(z)= Ia"Zﬁ*z"Z-l—a"ZZ*z-i—a"H Yiz)= |[a“6*z~¥ta~18*z~2+a~0*z+a~10
Compute roots of ¥ and error locations | Roots of ¥ = |[a"21, a*22, a"23] Ertar Locations = I[ll], 9. 8]
Compute Derivative of ¥ | Ia"ﬁ*z"Z-l—a"g Cormpute error polynotnial | efx) = Ia"l4*x"ll]-|—a*x"9+a"12*x"8

Compuke Coroword_| LLLLLGS0LE0LLLLLELLLLLYLGNOLLLLLLLELOE oo et ey
o(x) = 01001110011,00001101101100010100,0,10,1010,
,1,1,1,0, whatis 0607 |

I'II'II'II'II'II'II'II'II'II'II'II'II'II'Illl'll'll'll'llll'll'll'll'll'llllll'll'll'll'llllll'll'll'll'l;I

Codeword Syndromes | I[Il, 0,0,0,0,0,0,0] Einary Errars Corrected | IT Clear For Next Message | it |

Figure 12: Maplet output for codeword c(x) in binary and humber of binary errors corrected.

34

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

2.3 Experimentation

After viewing the sample labs, the module provides several interactive questions that allow the
student the opportunity to review basic concepts that are presented. Next, students are required as an
assignment to work with the actual Reed-Solomon code used on VVoyager Il. This code consisted of a
finite field made up of 256 elements generated using the primitive polynomial

p(x)=x8+x4+x3’+x2 +1.

Codewords are constructed by taking multiples using the generator polynomial
g(x) = (x-a)(x—a%)---(x-a*).

The assignment requires students to construct codewords and to correct messages using these
parameters using the two Maplets.

24 Summary

To conclude, the module summarizes the Reed-Solomon process and emphasizes the basic
mathematical computations that were utilized. The objective of this step is to again emphasize to the
student that the mathematics involved with Reed-Solomon codes uses many of the mathematical
techniques they have already been taught or are currently learning in calculus. By seeing these
techniques used in a real-life setting, students will have a greater appreciation for their importance.

3 Teaching and Learning Methodology

The Reed-Solomon module is incorporated into calculus in a three-class sequence shortly after algebra
review and basic differentiation concepts are discussed. In the first class, students are introduced to the
multimedia software in an interactive computer lab. The VVoyager application is introduced and the
importance of Reed-Solomon codes in its success is emphasized in a video and picture format.
Students are required as an assignment to view the entire multimedia presentation of the application
and answer basic questions concerning its content. The second class introduces the mathematics
involved with the application using Maplets. Students are required as an assignment to view the
contents of the sample Maplet labs. The third class is designed to answer questions concerning the
Maplet labs and to introduce the assignment where students are given the opportunity to implement the
Reed-Solomon code used on Voyager. Once this final assignment is completed, students are asked give
their perceptions and suggestions for improvement of the multimedia and Maplet presentations.

35

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

It should be pointed out that calculus students, after completing this module, are not expected to
completely understand the theory behind why and how Reed-Solomon codes work. The major
emphasis is to expose students to an interesting application of mathematics where they see how algebra
concepts and polynomial differentiation are important in solving practical problems. In addition, this
module can be extended to introduce Reed-Solomon codes to students in abstract algebra and
introductory courses in coding. To do this successfully, more details describing how and why Reed-
Solomon codes work can be added to the mathematical description (see [Klima et al., 2007] for
details). The Maplets described in this paper can be used in their current form or students can be
encouraged to write their own Maplets that perform the basic computations the code employs.

4 Current Status and Conclusion

The Reed-Solomon module has been tested in a section of Calculus I at Radford University and at
North Carolina A & T State University. Overall, results were positive. Students have indicated that
they enjoy learning about mathematics applications and would welcome the chance to learn more
about other types. In addition, due to the fact that more advanced mathematics is needed to thoroughly
understand Reed-Solomon codes, the module provides motivation for students to explore more
advanced courses in mathematics.

Other modules involving circuits with applications to radio tuning and basic orbital mechanics have
been developed. For more details on these applications, consult the paper [Sigmon, 2003] and the
website [Sigmon, 2007].

Acknowledgement

This work was implemented with grant support from the National Science Foundation, DUE-9752266.
References

[1] Klima, Richard E., Sigmon, Neil P., and Stitzinger, Ernest L., 2007. Applications of Abstract
Algebra with Maple and MATLAB, Taylor & Francis Group, LLC.

[2] Lidl, R. and Neiderreiter, H., 1986. Introduction to Finite Fields and their Applications. New
York: Cambridge U. Press.

[3] Sigmon, Neil P., 2007. Website: http://www.radford.edu/~npsigmon/grant/nsfgrant.htm

36

The Electronic Journal of Mathematics and Technology, Volume 2, Number 1, ISSN 1933-2823

[4] Sigmon, Neil P., 2003. “Determination of Satellite Orbits with Vector Calculus”, The UMAP
Journal, Volume 24, No. 1, 2003, 27-52.

[5] Sigmon, N. P., Stitzinger, E. L., 1996. “Applications of Maple to Reed-Solomon Codes”.
MapleTech, Volume 3 (No. 3): 53-59.

[6] Tang, G., Ram, B., and Shah, M., 1999. Incorporating Engineering Applications into Calculus
Instruction. Proceedings of the 1999 American Society of Engineering Education Annual
Conference, Charlotte, NC.

[7] Wicker, S. B., and Bhargava, V. K., editors, (1994). Reed-Solomon Codes and their Applications.
New York, NY: The Institute of Electrical and Electronics Engineers, Inc.

37

