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Abstract 
 

In many introductory and upper level college mathematics courses, due to time constraints, students are often not exposed 

to many real-life applications of the material. As a result, students can fail to see the importance of the topics covered. 

However, the use of technological tools can quickly bring practical applications of mathematics to life. Using these tools, 

students can quickly see how the mathematical concepts they cover have great value without the cumbersome background 

that would normally be needed in a more traditional setting.  This paper describes a web-based multimedia module 

designed for calculus involving Reed-Solomon codes. Reed-Solomon codes are currently being used to ensure reliable 

transformation of information for many applications, including satellite communications and compact discs. A discussion is 

given describing how these codes were instrumental in transmitting visual images of the outer planets during the Voyager 

satellite mission. All materials involving the module accompanying this paper can be reached here.  
 

1 Introduction 

 
A question that can often puzzle undergraduate students concerns the applicability of mathematics in 

standard introductory college mathematics courses. Many students regard these courses as a series of 

numbers and symbols that are never used in their major field and in so called “real-life” applications. 

As a result, students sometimes find these courses dull, uninteresting, and fail to see their importance. 

Hence, they lack the motivation necessary to obtain a thorough understanding of the material.  

 

Technological innovation provides an excellent tool to present interesting applications of mathematics 

that would be too lengthy and cumbersome to present in a traditional manner.  Through the use of web-

based multimedia and mathematical software, students can quickly be exposed to the basics of the 

application and see how mathematics is used in a “real-life” setting.  

 

This paper describes how multimedia modules can be designed to demonstrate practical applications of 

mathematics covered in typical engineering calculus. Specifically, a module created for calculus 

involving Reed-Solomon codes will be discussed. Normally, Reed-Solomon codes are introduced to 

students in abstract algebra or a first course in coding theory. However, the multimedia and 

mathematical software that will be described can allow students to quickly see how the concepts they 

study have value in performing some of the mathematics required with Reed-Solomon codes without 

the background that would be needed to understand the codes in a traditional setting. 
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The modules are web-based and interactive. In a typical module, students are introduced to an 

interesting application topic through the use of video and picture demonstrations. Through the use of 

two Maplet assignment labs per module, students explore and discover important mathematical aspects 

of the problem. These applications are designed to increase students’ awareness of the importance of 

the mathematics in their lives and careers. Faculty benefit in having easy access to up-to-date 

applications that many times are not provided in current textbooks. 

 

More details concerning this work can be found in the paper by [Tang et al., 1999]. A more detailed 

explanation of Reed-Solomon codes and the Voyager satellite mission can be found in [Klima et al., 

2007], [Sigmon and Stitzinger, 1996], and [Wicker and Bhargava, 1994].  

 

2 MODULE IMPLEMENTATION 

Error correcting codes involve creating a scheme for correcting errors in the transmission of 

information to ensure that the transmission is done reliably.  Reed-Solomon codes are a very common 

error correcting technique widely used today.  These codes involve sending information in the form of 

polynomial coefficients.  This code has been used in satellite communications and is currently being 

used to correct errors that occur in compact discs and cable television transmissions.  The Reed-

Solomon code module for this module emphasizes the use of these codes in ensuring reliable visual 

image transmissions of pictures from the Voyager II satellite of the planets Uranus and Neptune. The 

steps for the implementation of this module are now described. 

 

2.1   Video Demonstration of the Application 

 

The Voyager satellite mission and its purpose are introduced through pictures and the web-based 

QuickTime video software. Figure 1 and Figure 2 (next page) illustrate photographs given in the 

module taken by Voyager II while exploring the planets Uranus and Neptune. 

 

          
Figure 1: Pictures of Uranus and its rings (courtesy NASA/JPL). 
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To send pictures back to Earth from Uranus and Neptune, Voyager II had to transmit them in digitized 

form over a vast distance. Reed-Solomon codes were essential in ensuring these digitized pictures 

arrived on Earth in the correct form. The module carefully explains the history of the Voyager mission 

and the importance of Reed-Solomon codes for its success. 

 

            
Figure 2: Picture of Neptune and one its moons, Triton (courtesy NASA/JPL). 

 

2.2   Mathematical Computations 

 

To send a picture from outer space to Earth, the image is commonly digitized into bits, which are 

strings of 0’s and 1’s, and sent over a space channel. Reed-Solomon codes encode these strings into 

polynomials where the transmission and error correction process can be done in a mathematical 

fashion. Many of the mathematical computations required to encode messages and correct errors in 

Reed-Solomon codes involve calculations such as polynomial multiplication, finding roots of 

polynomials, polynomial division, and differentiation that a typical calculus student can perform.   

 

Due to the intensive computations required for Reed-Solomon codes, two Maplets are utilized to 

perform the mathematical calculations. Maplets allow one access to windows, dialogs, and other visual 

interfaces that are very simple to use and require no background programming knowledge. By simply 

typing information into text boxes and clicking buttons, students can easily execute the large amount of 

computations required almost instantaneously. The Maplets are produced using written code involving 

the symbolic manipulator Maple, which is a powerful programming language specially designed to 

perform symbolic, numeric, and graphic mathematical computations. However, to successfully use a 

Maplet, students do not have to have any working knowledge of Maple. They only need to have Maple 

installed on their machine and to run the end product of the Maple code used to construct the Maplet. 

 

In this module, all numerical computations are done in modulo 2 (binary) arithmetic. Formally, this 

says that if a and b are integers, a is congruent to b modulo 2, denoted as )2(mod ba  , whenever 2 

divides ba − . Hence, all numerical computations result in a 0 or 1. If 2 evenly divides a number, the 

resulting computation is 0. If not, the result is 1. For example, the number 6 in modulo 2 arithmetic 

reduces to 0, that is, )2(mod 06  . However, the number 7 in modulo 2 arithmetic reduces to 1, that 

is, )2(mod 17  . This arithmetic applies to all computations, including coefficients of polynomials.  
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For example, in modulo 2 arithmetic, the polynomial aaaaaaaa +=+++=+−+ 32323 0101247 . 

 

We next demonstrate the basic mathematics required and how Maplets are used to perform the Reed- 

Solomon process. This discussion will present Reed-Solomon codes at the level that it is presented to a 

calculus student. A more advanced discussion of these codes can be found in [Klima et al., 2007]. 

 

2.2.1  Finite Field Generation 

 

Reed-Solomon codes are constructed and decoded through the use of finite field arithmetic. Finite 

fields are a finite set of elements (in this paper polynomials) that exhibit special properties. Although 

calculus students are not introduced to all the properties that finite fields exhibit, some of the more 

basic and important ones are emphasized. We first state one of the most elementary facts: 

 

Finite Fields contain mp  elements, where p is prime (an integer where the only divisors are 1 

and p) and m is a positive integer. The positive integer m is the degree of a primitive polynomial 

(we discuss this below) used to generate the elements of the finite field.  

 

In Reed-Solomon codes, the prime we use is p = 2. As an example, suppose we want to generate a 

finite field of 3225 = elements. Note here that p = 2 and m = 5. Since m = 5, we need a primitive 

polynomial of degree 5. Only a selected number of polynomials are primitive. Tables for finding 

primitive polynomials can be found in [Lidl and Neiderreiter, 1986]. Fortunately, the Maplet we will 

soon display can quickly determine if a polynomial of a certain degree is primitive. 

  

In the examples that follow, the primitive polynomial we will use is 1)( 35 ++= xxxp . Note the 

degree of this polynomial is 5. Let x = a be a root of p(x). The root a is known as a primitive element. 

To generate the non-zero elements of a finite field, we perform repeated exponentiations on the 

primitive element a until all the non-zero elements are generated. For our example that contains 

3225 =  elements, this requires generating the set }1,,,,,{ 313032 =aaaaa  . Note the last non-zero 

element, in this case, 
31a , will always be equal to 1 (a discussion of why this is true can be found in 

[Lidl and Niederreiter, 1986]. The finite field is completed by adding 0 to this set. 

 

It turns out for reasons that will be seen later that a convenient way to represent the non-zero finite 

field elements is through a “polynomial representation”. This representation is accomplished by using 

the fact the primitive element a is a root of the primitive polynomial p(x). To see how this works, 

consider our finite field of 3225 =  elements generated by the primitive element a. We generate the 

first four non-zero elements of this field in the normal way, that is, we compute a, 
2a , 3a , and 

4a .  

However, once 5a  is reached, we note that a is a root of p(x) and write 
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                                                               01)( 35 =++= aaap . 

 

Solving for 5a  and noting that all polynomial coefficients are reduced modulo 2 gives 

 

                                                                 11 335 +=−−= aaa . 

 

Hence, 13 +a  is the polynomial we will use to represent 5a  in the finite field. Subsequent elements 

can be generated in the following manner:  

 

aaaaaaa +=+== 4356 )1( , 

11)( 232325467 ++=++=+=+== aaaaaaaaaaaa ,  

etc. 

 

This process continues until the last non-zero element, 31a , is reached. Generating all the polynomial 

representations of non-zero elements by hand requires a tedious process. However, the Reed-Solomon 

codeword generator Maplet given in Figure 3 does this process quickly. We begin by entering the 

polynomial 1)( 35 ++= xxxp  and verify that it is primitive by clicking the Is p(x) primitive button.  

 

 
Figure 3: Reed-Solomon codeword generator Maplet verifying input polynomial is primitive 
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By clicking Generate Finite Field and the Display Finite Field buttons, the elements of the finite 

field are displayed in a separate window given by Figure 4. 

 

 
Figure 4: Finite field display 

 
2.2.2  Encoding a Message to Be Sent 

 

When setting up a scheme to transmit a message, we must specify the maximum number of errors that 

can be corrected in the transmission upon arrival to the message’s destination. Reed-Solomon codes 

can correct up to a certain number of errors in a transmitted message. Let t be this specified number of 

errors. Then as long as 122 − mt , where m2  is the number of finite field elements (recall for this 

example the number is 3225 = ), then the scheme is guaranteed to correct t errors.  

 

For the following example, we will use a t = 4 error correcting code. Note for this value of t that 

311282 5 =−=t . In error correcting codes, the transmitted source message is called a codeword. 

Codewords in Reed-Solomon codes are created by taking multiples of the polynomial  

 

)())()(()( 232 taxaxaxaxxg −−−−=  . 
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Here, g(x) is called the generating polynomial. That is, to create a codeword, we take a polynomial  

m(x) of degree less than tm 212 −−  and multiply it by the generating polynomial g(x). This gives the 

codeword c(x) = m(x)g(x). Figure 5 illustrates the Reed-Solomon codeword generator Maplet where 

for a 4 error correcting code, a codeword is computed using the generating polynomial 

 
9201027118)( xaxaxaxm ++=  . 

 

The generator polynomial is computed by clicking the Compute Generating Polynomial Button and 

the codeword is computed by clicking the Compute Codeword button.  

 

 
Figure 5: Reed-Solomon codeword generation example 

 

Thus, the codeword is the polynomial 

 
9251028112112213314121524161917261813198 xa+x)( +ax+ax+ax+ax+ax+ax+ax+ax+axaxc = . 

 

The coefficients of the codeword contain the transmitted information. In practice, these coefficients are  

transmitted in binary, that is, as a string of 0’s and 1’s. To describe how the coefficients of c(x) are 

translated to binary, consider the first coefficient of the codeword, 8a . If we use the process described 
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in Section 2.2.1 with the primitive polynomial 1)( 35 ++= xxxp  for converting finite field elements 

to polynomials, this element has the polynomial representation 

 
432348 )1()1()0()1(1)0( aaaaaaaa ++++=++= . 

 

Reading off the coefficients gives the binary string 01011. The other coefficients are converted to 

binary in a similar manner. Note that the number of binary digits in this string, five, is the same as the 

degree of the primitive polynomial used to generate the finite field. In the Reed-Solomon codeword 

generator Maplet, clicking the Convert to Binary button converts the codeword to its equivalent 

binary representation. Figure 6 shows the result for this example. 

 

 
Figure 6: Binary Representation of the codeword 

 

 

2.2.3 Checking a Received Message for Errors 

 

Suppose the codeword is transmitted and a message received. Our goal is to check if there are errors in 

the transmission, and if so, correct them.  It is in this process that calculus students see the importance 

of basic polynomial differentiation since computing the derivative of polynomials is essential in the 

error correction process. To demonstrate this process, suppose we receive the following message that 

has been converted from binary to polynomial form. 
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122523319421

517620729822919101011712101314131524

          

)(

axaxaxaxa

xaxaxaxaxaxaxaxaaxxaxaxr

+++++

++++++++++=
 

 

Recall that a codeword c(x) is obtained by forming the product of the polynomial m(x) and the 

generating polynomial g(x). That is, c(x) = m(x)g(x) where 

 

)())()(()( 232 taxaxaxaxxg −−−−=  . 

 

Because of how c(x) is constructed with the generating polynomial g(x), the terms taaaa 232 ,,,,   

are all roots of c(x). This provides the basis for checking whether a received message is a codeword.  

 

Suppose that we receive a message r(x) which is not a codeword, that is, suppose )()( xcxr  . Then 

r(x) will not be a multiple of the generating polynomial g(x). If so, then there will be at least one of the  

terms taaaa 232 ,,,,   that is not a root of r(x). In mathematical notation, this says 

 

0)( iar  for at least one ti 21= . 

 

The values of )( iar  evaluated from 1..2t are known as syndromes. If we substitute taaaa 232 ,,,,   

into r(x) and all evaluate to be 0, then r(x) is a codeword and we can stop. If we substitute 
taaaa 232 ,,,,   into r(x) and any evaluate to not be 0, then r(x) is not a codeword and we must 

proceed to the necessary steps to correct it. 

 

Figure 7 (next page) illustrates the Reed-Solomon code error corrector Maplet designed to check a 

received message for errors and correct them if necessary. In this Maplet, the primitive polynomial 

1)( 35 ++= xxxp  and the maximum number of errors (t = 4) the code can correct are entered. The 

Maplet allows received messages to be entered in binary or polynomial form. Since polynomial form is 

used, the Polynomial button is clicked and a separate window is given for entering the received 

polynomial shown in Figure 8 (next page). The syndromes are found by clicking the Compute 

syndromes button. In Figure 7, the syndromes are ][ 2325313518274 , a, a, a, a, a, a, aa . Since the 

syndromes must all be zero for the message to be a codeword, we must proceed and correct the errors. 

 

2.2.4  Error Correction 

 

The initial step for correcting the received polynomial r(x) involves using the Euclidean algorithm. A 

discussion of this algorithm can be found in [Klima et al., 2007]. Our goal for executing this algorithm 

is to determine a polynomial R(z) known as the error evaluator polynomial and a polynomial V(z) 

called the error locator polynomial.  
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Figure 7: Reed-Solomon Error Corrector Maplet 

 

 

 
Figure 8: Maplet window for entering received polynomial 
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As a preliminary, using the syndromes found above as coefficients, we form a function of degree 2t – 1 

known as the syndrome polynomial )(zS . Using the syndromes ][ 2325313518274 , a, a, a, a, a, a, aa  

for the t = 4 error correcting code, this polynomial would be  

 
7236255341335218274)( z+az+az+az+az+azz+a+aazS = . 

 

The next step requires executing the Euclidean algorithm on the syndrome polynomial )(zS and the 

polynomial 82)( zzzf t == . This process, discussed in detail in [Klima et al., 2007], uses repeated 

polynomial division and is beyond the scope of what is normally discussed in calculus. However, the 

Reed-Solomon code error corrector Maplet quickly provides the necessary results. The output of this 

process gives the error evaluator polynomial 1422226)( azazazR ++=  and the error locator 

polynomial 10921836)( azazazazV +++= .  Figure 9 illustrates the Maplet output that is achieved 

by clicking the Compute syndrome polynomial and f and Compute polynomials R and V buttons. 

 

 
Figure 9: Maplet output for error evaluator polynomial R(z) and the error locator polynomial V(z) 
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The polynomials R(z) and V(z) are used to determine the polynomial coefficient location of the errors. 

Since c(x), the codeword, and r(x), the received message, are not equal, their polynomial coefficients 

must differ at certain powers of x. The difference in these coefficients makes up the coefficients of an 

error polynomial that we will denote as e(x).  Using e(x), we can find the codeword c(x) by computing 

c(x) = r(x) + e(x). Our goal is to find e(x), which is what R(z) and V(z) are used for. 
 

The roots of V(z) determine the polynomial location of the errors. In the Reed-Solomon process, each 

root of V(z) will be one of the non-zero elements in the finite field. Recall in the above example that 

we generated a finite field of 3225 =  elements, which gave us 31 non-zero elements. By clicking the 

Compute roots of V and error locations button in the Reed-Solomon error corrector Maplet, the 

roots of V and corresponding error positions are computed. Figure 10 displays the result. 

 

 
Figure 10: Maplet output for roots of error locator polynomial V(z) and corresponding error positions. 
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The output says, for example, that 21a  is a root of V(z), that is 0)( 21 =aV , and that an error position 

occurs at the 10x  location, which will be a term that makes up e(x). There is a relationship between the 

exponent of the root 21a  of V(z), 21, and the error position of 10. Recall that there are 31 non-zero 

finite field elements. The exponent of the root of V(z) and the error position will always add to give the 

number of non-zero finite field elements. Looking at the output from Figure 10, note that 21 + 10 = 31, 

22 + 9 = 31, and 23 + 8 = 31. The output from Figure 10 also tells us that the difference between r(x) 

and c(x) occur in the coefficients of 10x , 9x , and 8x , which make up the terms of e(x) . Since we have 

three roots, this indicates that three errors have occurred.  

 

Knowing the terms that make up e(x), we now must determine what the coefficients of these terms are. 

That is, we must determine the coefficients of the terms 10x , 9x , and 8x .  The error coefficient 

positions can be computed using the formula 

 

  
)(

)(
i

i

j
aV

aR
e


= ,      (1) 

 

where 
ia  is a root of the error locator polynomial V(z),  i + j sums to the number of non-zero finite 

field elements, and je  is the polynomial coefficient for the term jx  for the thj  error position in the 

error polynomial e(x). Equation (1) is the error evaluator polynomial R(z) divided by the derivative of 

the error locator polynomial V(z). Both are evaluated at a root of the error locator polynomial V(z) used 

to find the error position. For example, the term 21a  was a root of the error locator polynomial V(z) 

and the error position was 10. Thus, equation (1) says the coefficient of the error position 10x  is  

 

)(

)(
21

21

10
aV

aR
e


= . 

 

The coefficients 9e  and 8e  of e(x) are determined similarly using (1). Once its coefficients are 

determined, the error polynomial e(x) is computed and the codeword can be found. To get the 

codeword, we simply add the error polynomial e(x) to the received polynomial r(x), that is, we 

compute c(x) = r(x) + e(x). Figure 11 (next page) illustrates the result of using the Reed-Solomon error 

Maplet to compute the derivative 926)( azazV +=  of the error locator polynomial V(z) and the error 

polynomial 81291014)( xaaxxaxe ++=  . The codeword is then computed to be  

 

122523319421

51762072981891810411712101314131524

          

)(

axaxaxaxa

xaxaxaxaxaxaxaxaaxxaxaxc

+++++

++++++++++=
. 
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These terms are computed in the Maplet by clicking the Compute Derivative of V, Compute error 

polynomial, and Compute Codeword buttons respectively. To verify that c(x) is a codeword, click 

the Codeword Syndromes to verify that the syndromes are now all zero. 

 

 
Figure 11: Maplet output error polynomial e(x) and codeword c(x). 

 

By comparing the received polynomial  

 

122523319421

517620729822919101011712101314131524

          

)(

axaxaxaxa

xaxaxaxaxaxaxaxaaxxaxaxr

+++++

++++++++++=
 

 

and codeword 
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122523319421

51762072981891810411712101314131524

          

)(

axaxaxaxa

xaxaxaxaxaxaxaxaaxxaxaxc

+++++

++++++++++=
, 

 

we can see that 3 errors were corrected at the coefficients of 8x , 9x , and 10x . An important fact to 

note is that the errors occurred as consecutive coefficients. This constitutes what is called an error 

burst, an occurrence not uncommon in error correction. 

 

Specifying the number of errors a code corrects refers to polynomial coefficient errors. In the example, 

the error polynomial e(x) was made up of three terms, which constituted three polynomial errors. This 

will result in even more binary errors being corrected. By converting the codeword to binary by 

clicking the Convert to Binary button and clicking the Binary Errors Corrected button in the Reed-

Solomon error corrector Maplet, Figure 12 illustrates that seven binary errors were corrected. 

 

 
Figure 12: Maplet output for codeword c(x) in binary and number of binary errors corrected. 
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2.3 Experimentation 

 

  After viewing the sample labs, the module provides several interactive questions that allow the 

student the opportunity to review basic concepts that are presented. Next, students are required as an 

assignment to work with the actual Reed-Solomon code used on Voyager II. This code consisted of a 

finite field made up of 256 elements generated using the primitive polynomial 

 

1)( 2348 ++++= xxxxxp . 

 

Codewords are constructed by taking multiples using the generator polynomial 

 

)())(()( 322 axaxaxxg −−−=  . 

 

The assignment requires students to construct codewords and to correct messages using these 

parameters using the two Maplets. 

 

2.4 Summary 

 

To conclude, the module summarizes the Reed-Solomon process and emphasizes the basic 

mathematical computations that were utilized. The objective of this step is to again emphasize to the 

student that the mathematics involved with Reed-Solomon codes uses many of the mathematical 

techniques they have already been taught or are currently learning in calculus. By seeing these 

techniques used in a real-life setting, students will have a greater appreciation for their importance. 

 

3 Teaching and Learning Methodology  

 

The Reed-Solomon module is incorporated into calculus in a three-class sequence shortly after algebra 

review and basic differentiation concepts are discussed. In the first class, students are introduced to the 

multimedia software in an interactive computer lab. The Voyager application is introduced and the 

importance of Reed-Solomon codes in its success is emphasized in a video and picture format. 

Students are required as an assignment to view the entire multimedia presentation of the application 

and answer basic questions concerning its content. The second class introduces the mathematics 

involved with the application using Maplets. Students are required as an assignment to view the 

contents of the sample Maplet labs. The third class is designed to answer questions concerning the 

Maplet labs and to introduce the assignment where students are given the opportunity to implement the 

Reed-Solomon code used on Voyager. Once this final assignment is completed, students are asked give 

their perceptions and suggestions for improvement of the multimedia and Maplet presentations.  
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It should be pointed out that calculus students, after completing this module, are not expected to 

completely understand the theory behind why and how Reed-Solomon codes work. The major 

emphasis is to expose students to an interesting application of mathematics where they see how algebra 

concepts and polynomial differentiation are important in solving practical problems. In addition, this 

module can be extended to introduce Reed-Solomon codes to students in abstract algebra and 

introductory courses in coding. To do this successfully, more details describing how and why Reed-

Solomon codes work can be added to the mathematical description (see [Klima et al., 2007] for 

details). The Maplets described in this paper can be used in their current form or students can be 

encouraged to write their own Maplets that perform the basic computations the code employs. 

 

4 Current Status and Conclusion   

 
The Reed-Solomon module has been tested in a section of Calculus I at Radford University and at 

North Carolina A & T State University. Overall, results were positive. Students have indicated that 

they enjoy learning about mathematics applications and would welcome the chance to learn more 

about other types. In addition, due to the fact that more advanced mathematics is needed to thoroughly 

understand Reed-Solomon codes, the module provides motivation for students to explore more 

advanced courses in mathematics. 

 

Other modules involving circuits with applications to radio tuning and basic orbital mechanics have 

been developed. For more details on these applications, consult the paper [Sigmon, 2003] and the 

website [Sigmon, 2007].  
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